

Sustainable Agriculture Practices in Telangana

Dr. G. Sriram

Associate Professor of Economics
Government Degree College, Dharpally

DOI:10.37648/ijps.v21i02.050

¹Received: 30/11/2025; Accepted: 31/12/2025; Published: 07/01/2026

Abstract

Sustainable agriculture is a farming system that satisfies current food requirements without compromising environmental integrity or exhausting resources, thereby enabling future generations to fulfil their needs. It integrates environmental health, economic viability, and social equity through practices such as crop rotation, water conservation, and biodiversity enhancement, emphasizing long-term resilience. Telangana's sustainable agriculture scene combines government initiatives (such as NMSA, PMKSY, and Paramparagat Krishi Vikas Yojana) that promote organic farming, soil health, and water efficiency with farmer-led adoption of practices such as puddling, crop rotation, and integrated pest management. These practices are supported by bodies such as ICRISAT and KVKs. The goal of these practices is to mitigate the effects of climate change and improve farmer livelihoods through value addition and market linkages for crops such as rice, maize, and pulses. However, challenges such as high-input farming continue to exist. Telangana's route entails bolstering financial support (Rythu Bandhu) with sustainability mandates, boosting organic farming through clusters, improving farmer capacity, and creating robust value chains, all with the goal of moving towards an agricultural system that is more resilient and egalitarian.

1. Introduction

Agriculture that is sustainable incorporates three primary objectives: the health of the environment, the profitability of the economy, and all-around social and economic equality. The achievement of these objectives has been influenced by a wide range of beliefs, policies, and practices. One might say that the physical characteristics of sustainability are recognized to some extent. Activities such as excessive tilling, which can result in erosion, and irrigation without appropriate drainage, which can lead to the accumulation of salt in the soil, are examples of practices that have the potential to cause long-term damage to soil. When it comes to determining how different practices affect the soil qualities that are vital to sustainability, long-term experiments provide some of the greatest evidence. Despite the fact that air and sunlight are accessible everywhere on Earth, crops are also dependent on the nutrients in the soil and the amount of water that is available. The cultivation and harvesting of crops by farmers results in the removal of a portion of these nutrients from the soil. Without replenishment, the soil would experience nutrient depletion, rendering it unfit for further agricultural production and rendering it unusable.

These three primary goals—a healthy environment, economic viability, and social and economic equity—are the ones that practitioners of sustainable agriculture strive to include into their work. Every individual who is involved in the food system, including farmers, food processors, distributors, retailers, consumers, and waste managers, has the potential to contribute to the establishment of an agricultural system that is conducive to sustainability. In the field of sustainable agriculture and sustainable food systems, there are a great number of practices that are regularly utilized by individuals. On the farm, growers may employ techniques that improve the health of the soil, reduce the amount of water used, and reduce the amount of pollutants. Foods that are farmed using practices that promote the health of farmworkers, that are environmentally friendly, or that boost the local economy are examples of "values-based" foods that consumers and retailers who are concerned with sustainability might look for during their

¹How to cite the article: Sriram G. (2026); Sustainable Agriculture Practices in Telangana; *International Journal of Professional Studies*; Vol 21, Special Issue 2, 335-339; DOI: <http://doi.org/10.37648/ijps.v21i02.050>

shopping trips. In addition, academics working in sustainable agriculture frequently combine a wide range of disciplines in their work, including biology, economics, engineering, chemistry, community development, and a great number of others. On the other hand, sustainable agriculture is not simply a set of methods combined together. There is also a process of negotiation involved, which involves a push and pull between the frequently conflicting interests of an individual farmer or of individuals in a community as they seek to find solutions to complicated difficulties regarding the manner in which we cultivate our food and fibre

2. Sustainable Practices & Initiatives

- **Organic Farming Focus:** Telangana is boosting organic farming under PKVY, aiming to convert large tracts of land, using traditional methods, and providing incentives for organic inputs.
- **Water & Soil Management:** To improve soil health (for example, by using cover crops and low tillage) and water efficiency (for example, by using PMKSY), which is essential for the semi-arid environment that is prone to droughts and floods, programs are being implemented.
- **Integrated Farming:** Manure, draught power, and a variety of income sources are all benefits that small farmers receive when they combine their livestock and agricultural production.
- **Climate-Resilient Tech:** According to NABARD document, farmers have positive impressions of climate-resilient technologies and intend to embrace them in the near future.
- **Value Addition & Market Linkages:** ICRISAT works on adding value (e.g., processing pigeon peas) and connecting farmers to markets, including large buyers like temples, enhancing livelihoods.
- **Farmer Support:** There are programs such as Rythu Bandhu that provide financial assistance, and there are KVKS (Krishi Vigyan Kendras) and extension services that deal with training and support.

3. Key Practices in Adoption

- **High Adoption:** Farmers widely adopt practices like puddling, timely transplanting, and harvesting methods in paddy cultivation.
- **Partial Adoption:** Certified seed use, seed treatment (especially organic methods), and certain spacing techniques see lower adoption rates.
- **Challenges:** It is still customary to practice agriculture with a high level of inputs, and organic inputs such as vermicomposting can be expensive, which limits scale.

The state of Telangana is at the forefront of this problem, and sustainable development is one of the most critical policy topics for governments that are undergoing rapid economic transformation. Telangana, which is India's youngest state, has accomplished remarkable growth in a variety of industries, including information technology services, agriculture, irrigation infrastructure, pharmaceuticals, and urban development. However, this economic success has simultaneously put a strain on the natural ecosystems of the state by causing deforestation, groundwater stress, loss of biodiversity, pollution, and vulnerabilities related to climate change. The purpose of this article is to present a comprehensive analysis of Telangana's efforts to strike a balance between its development goals and its commitment to protecting the environment. Important government programs, such as Haritha Haram and Mission Kakatiya, as well as projects pertaining to renewable energy and sustainable farming techniques, are investigated in this study. In addition to this, it studies growing environmental difficulties, vulnerabilities that are peculiar to specific sectors, and governance problems. The article emphasizes how Telangana may build its green governance architecture and progress toward a style of development that is resilient, inclusive, and environmentally responsible. This is accomplished via the use of analytical tables, case studies, and lengthy narrative explanations.

The availability and quality of natural resources, such as soil and water, are critical factors in determining the ability to maintain agricultural output. For agricultural expansion to be maintained, it is necessary to encourage the preservation and sustainable utilization of these limited natural resources through the implementation of appropriate

location-specific policies. Rainfall continues to be the primary source of water for Indian agriculture, which accounts for forty percent of the country's total food production and covers approximately sixty percent of the net sown land. Additionally, the expansion of rain-fed agriculture in conjunction with the preservation of natural resources is the key to meeting the ever-increasing need for food grain in the country. Towards this aim, the National Mission for Sustainable Agriculture (NMSA) has been developed with the purpose of enhancing agricultural output, particularly in rain fed regions, with a particular emphasis on integrated farming, water usage efficiency, soil health management, and the synergistic conservation of resources.

The National Mission for Sustainable Agriculture (NMSA) is one of the eight missions that are described in the National Action Plan on Climate Change (NAPCC). The NMSA's mandate is derived from the Sustainable Agriculture Mission. 'Improved crop seeds, livestock and fish cultures', 'Water Use Efficiency', 'Pest Management', 'Improved Farm Practices', 'Nutrient Management', 'Agricultural insurance', 'Credit support', 'Markets', 'Access to Information', and 'Livelihood diversification' are the ten key dimensions that are included in the Mission Document, which was given 'in principle' approval by the Prime Minister's Council on Climate Change (PMCCC) on September 23, 2010. The objective of these strategies and programmers of action (POA) is to promote sustainable agriculture through a series of adaptation measures that concentrate on ten key dimensions that encompass Indian agriculture. The Department of Agriculture and Fisheries (DAC&FW) is currently in the process of implementing and integrating these measures into its ongoing and proposed missions, programs, and schemes during the XII Five Year Plan. This is being accomplished through a process of restructuring and convergence. NMSA architecture has been designed by combining, consolidating, and incorporating all activities and programs that are currently being carried out as well as those that have recently been proposed in relation to sustainable agriculture. Particular attention has been paid to the conservation of soil and water, the efficiency with which water is used, the management of soil health, and the development of rainfed areas. Infusing the community-based strategy with the prudent exploitation of commons resources will be the primary goal of the National Minority Sports Association (NMSA).

NMSA will cater to key dimensions of "Water use efficiency," "Nutrient Management," and "Livelihood diversification" by adopting a sustainable development pathway. This will be accomplished by gradually shifting to environmentally friendly technologies, adopting energy efficient equipment, conserving natural resources, and integrating farming practices, among other things. Aside from that, the National Agricultural Science and Technology Association (NMSA) has the objective of promoting improved agronomic practices that are specific to a particular location. These practices include soil health management, enhanced water use efficiency, judicious use of chemicals, crop diversification, progressive adoption of crop-livestock farming systems, and integrated approaches such as crop-sericulture, agro-forestry, and fish farming, and so on.

4. Major Findings

The assessment of sustainable agricultural practices in Telangana State indicates that the prevailing high-input methods are predominantly unsustainable, characterized by excessive groundwater extraction and soil degradation. However, the state possesses considerable potential for a shift towards more sustainable, climate-resilient practices through strategic interventions and policy reform.

- **Unsustainable Practices are Prevalent:** As a result of the widespread reliance on water-intensive crops (such as paddy), the excessive use of chemical fertilizers and pesticides, and the overexploitation of groundwater, soil degradation and environmental damage are occurring. As a result of perceived immediate economic gains and labour scarcity, farmers frequently favour high-input methods, despite the fact that these methods have detrimental repercussions over the long term.
- **Government Initiatives Show Promise:** State programs like "Mission Kakatiya" (aimed at upgrading water tanks to enhance groundwater recharge) and "Harithaharam" (focused on increasing green cover) represent efforts towards sustainability. The "Rythu Bandhu" scheme, although offering essential financial support, has faced criticism for failing to expressly endorse sustainable practices, indicating a need for policy modification to encourage environmentally friendly agriculture.

- **Adoption is Partial and Uneven:** Despite the fact that certain farmers have shown a high level of acceptance of particular suggested practices, such as the ideal transplanting times for paddy, the overall adoption of comprehensive sustainable packages, such as integrated pest management, soil-test-based fertilizer delivery, and organic treatments, is still only partial.
- **Conservation Agriculture is Beneficial:** Research indicates that conservation agriculture (CA) techniques, including intercropping, minimal tillage, and crop rotation, can result in enhanced yields, greater profit margins, and superior soil health relative to conventional practices. Intercropping is a promising water-efficient technique for the rain-fed regions that comprise the majority of Telangana's agricultural land.
- **Need for Value Addition and Market Linkages:** Additionally, there is a requirement for improved infrastructure for processing, value addition, and direct market linkages in order to guarantee premium pricing for organic goods produced by farmers. This is necessary in order for sustainable methods such as organic farming to be economically feasible.
- **Climate Challenges are real:** The semi-arid environment of Telangana renders it susceptible to droughts, floods, and heat waves, highlighting the critical necessity for climate-resilient agricultural strategies, such as the promotion of drought-resistant crop varieties and micro-irrigation systems.

5. Conclusion

Despite the fact that Telangana's agricultural growth is excellent in many criteria (such as increased production areas), the state is currently at a critical juncture when it confronts substantial challenges to its long-term sustainability. In order to make a final change toward environmental and economic sustainability, a multi-faceted approach is required. This approach should combine comprehensive government policy incentives, education and training for farmers, and the widespread adoption of conservation and organic farming techniques that have been demonstrated to be effective. In the event that this transformation is managed well, it has the potential to guarantee food security, safeguard the natural resource base, and enhance the livelihoods of farmers. Development interventions in the agricultural sector have significant implications, as they directly and indirectly influence the livelihoods of rural agricultural communities. The existing interventions significantly enhanced the agricultural methods of tribal farmers, optimized the pigeon pea value chain, substantially increased farm revenue, and generated entrepreneurial prospects in an underprivileged region. The establishment of farmer aggregates and enhancement of their accountability, the volatility of dhal prices, and the procurement of raw materials were significant challenges during the initial phases of the intervention, necessitating comprehensive extension activities, including awareness campaigns and training programs, to address these issues. The beneficial effects of the interventions underscore the necessity to expand and duplicate analogous initiatives to enhance farmer income by establishing efficient and inclusive value chains in rural and tribal regions.

References

Business Line. (2018). *Average farm landholding size shrinks to 1.1 ha*. <https://www.thehindubusinessline.com/economy/agri-business/average-farmlandholding-size-shrinks-to-11-ha/article24719240.ece>

Economic Times. (2018). *Economic survey 2017-18: Agriculture – Climate change likely to lower farmers' income by 25%*. <https://www.financialexpress.com/budget/economic-survey-2017-18-agriculture-climate-change-likely-to-lowerfarmers-income-by-25/1035560/>

Kurien, P. P., & Parpia, H. A. B. (1968). Pulse milling in India. *Journal of Food Science and Technology*, 5, 203–210.

Lowder, S. K., Skoet, J., & Raney, T. (2016). The number, size, and distribution of farms, smallholder farms, and family farms worldwide. *World Development*, 87, 16–29.

Singh, U. (1995). Method of dehulling of pulses: A critical appraisal. *Journal of Food Science and Technology*, 32(2), 81–93

Swamy, R. N., Ramkrishnaiah, N., Purien, P. P., & Salimath, P. V. (1991). Studies on carbohydrates of red gram in relation to milling. *Journal of Food Science and Agriculture*, 57, 379–390.

Vishwakarma, P., et al. (2017). Status of pulse milling processes and technologies: A review. *Critical Reviews in Food Science and Nutrition*. <https://doi.org/10.1080/10408398.2016.1274956>